Effect of cation distribution on self-diffusion of molecular hydrogen in Na3Al3Si3O12 sodalite: a molecular dynamics study.
نویسندگان
چکیده
The diffusion of hydrogen in sodium aluminum sodalite (NaAlSi-SOD) is modeled using classical molecular dynamics, allowing for full flexibility of the host framework, in the temperature range 800-1200 K. From these simulations, the self-diffusion coefficient is determined as a function of temperature and the hydrogen uptake at low equilibrium hydrogen concentration is estimated at 573 K. The influence of the cation distribution over the framework on the hydrogen self-diffusion is investigated by comparing results employing a low energy fully ordered cation distribution with those obtained using a less ordered distribution. The cation distribution is found to have a surprisingly large influence on the diffusion, which appears to be due to the difference in framework flexibility for different cation distributions, the occurrence of correlated hopping in case of the ordered distribution, and the different nature of the diffusion processes in both systems. Compared to our previously reported calculations on all silica sodalite (all-Si-SOD), the hydrogen diffusion coefficient of sodium aluminum sodalite is higher in the case of the ordered distribution and lower in case of the disordered distribution. The hydrogen uptake rates of all-Si-SOD and NaSiAl-SOD are comparable at high temperatures (approximately 1000 K) and lower for all-Si-SOD at lower temperatures (approximately 400 K).
منابع مشابه
Molecular Dynamics Simulation of Water in Single WallCarbon Nanotube
The overall aim of this study is to calculate some water properties in the single wall carbon naotubes (SWCNT) and compare them to the bulk water properties to investigate the deviation of water properties inside the SWCNT from those in the bulk. Here some physical and transport properties of water molecules in the single wall carbon nanotube were reported by performing molecular dynamics (MD) ...
متن کاملMolecular-dynamics analysis of the diffusion of molecular hydrogen in all-silica sodalite.
In order to investigate the technical feasibility of crystalline porous silicates as hydrogen storage materials, the self-diffusion of molecular hydrogen in all-silica sodalite is modeled using large-scale classical molecular-dynamics simulations employing full lattice flexibility. In the temperature range of 700-1200 K, the diffusion coefficient is found to range from 1.610(-10) to 1.810(-9) m...
متن کاملMolecular dynamics studies of straight-chain alkanes diffusion in SiO2 ceramic versus Bosanquet formula
Molecular Dynamics (MD) simulations were applied to calculate self-diffusion coefficients (Di ) and heats of adsorption for ethane, propane and n-butane. The simulations were done in temperature range of 300-525 K for various concentrations inside the pores of silicalite type zeolite. The calculated values of self-diffusion coefficients and heats of adsorption resulted from the current wo...
متن کاملInteraction of Human Serum Albumin with Ethyl 2-[2-(dimethylamino)-4-(4-nitrophenyl)-1,3-thiazole-5-yl]-2-oxoacetate as a Synthesized Ligand
The interaction of human serum albumin with Ethyl 2-[2-(dimethylamino)-4-(4-nitrophenyl)- 1,3-thiazole-5-yl]-2-oxoacetate was investigated by using isothermal titration UV-visible spectrophotometry in tris-buffer, pH 7.4. According to these results, it was found that there are a set of 4 binding sites for this ligand on HSA with positive cooperativity in the binding process. This thiazole deriv...
متن کاملMolecular dynamics studies on the denaturation of polyalanine in the presence of guanidinium chloride at low concentration
Molecular dynamic simulation is a powerful method that monitors all variations in the atomic level in explicit solvent. By this method we can calculate many chemical and biochemical properties of large scale biological systems. In this work all-atom molecular dynamics simulation of polyalanine (PA) was investigated in the presence of 0.224, 0.448, 0.673, 0.897 and 1.122 M of guanidinium chlorid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 121 20 شماره
صفحات -
تاریخ انتشار 2004